1 Extended Data

- 4 Extended Data Figure 1. Summary of IgG VH-only sequencing of donor 1 [a] and donor 2
- **[b].** Libraries generated from these sequences were used for IgSeq proteomics and as a starting point for YSD selections.

Donor	Representative CDR3	ECD	RBD		
1	AKASQLFWLGQFTRDGFDIW				
1	ARDVFDPTAVSPIGGFDYW				
1	ARGVGAMQLWLRGYYFDSW				
1	ARGGRPITILGAVLAGGRNYFDPW				
1	ARDTFDPIDSKEGGWFDPW				
1	ATGSPFDRTQNWFDPW				
1	ARRESPPGYW				
1	ARHLGSGRYLRYLQHW			XI	C Area
1	ARDAHCIKGVCTHHGMDVW				
1	AHRTHALPPSVAGFDYW				10
1	AKGRKGAALDYW				
1	AKDYTRTDWYGGEVIDYW				
1	ARTCKGSPGGRDGYNCLDYW				
1	ARAPRGIAGDYW				
1	ARASEGRDIGGGYW				
2	AREGFGVVIDYW				10
2	AHRVPRMELWLRGGWFDPW				
2	TKNRGGPSDHW				
2	ATAAGVRGRGTIDYW				
2	ARADSCNGGICYYRGMDVW				
2	ARHMGLQLWLRAHDAFDLW				
2	ARLRGVEDIVVVPAARTYNWFDPW				10
2	ATDGYCPGGVCHRLGSFDFW			_	
2	ARGTIYFDRSGYRRVDPFHIW				
2	ARHGPALYNYGSGAYLDYW				
2	ARIPIATHLGSDYW				NI-t
2	ARRQWTFDYW			Da	NOT
2	VRGRRGGYNSPDYW			De	tected
2	ASPEASYYYGDRGHFFPARRIDFDFW				
2	ARQNVVLRFLERASRFDPW				
2	ASPTVTM				
2	ARVGTTVTANYYYGMDVW				
2	ATRLEYNTPEKKPFDFW				
2	ARDYGRGGVW				
2	ARRSGSGWTWGYFDYW				
2	ARIPRDGYNFIDFW				

9 Extended Data Figure 2. Anti-SARS-CoV-2 ECD and RBD antibody clonotypes identified

- 10 in the serum of patients 1 and 2 (P1, P2) by Ig-Seq proteomic analysis. Heat maps
- 11 represent the relative abundances of unique clonotypes calculated as the sum of XIC peak areas
- 12 of CDR3-peptides observed by LC-MS/MS.

Name	V-Gene	J-Gene	Light CDR1	Light CDR2	Light CDR3
PLC1	IGKV1-5	IGKJ1	QSISSW	DAS	QQYNSYSPWT
PLC2	IGKV2-28	IGKJ2	QSLLHSNGYNY	LGS	MQALQTPPYT
PLC3	IGKV3-11	IGKJ4	QSVSSY	DAS	QQRSNWPPLT
PLC4	IGKV3-15	IGKJ1	QSVSSN	GAS	QQYNNWPPWT
PLC5	IGKV3-20	IGKJ1	QSVSSSY	GAS	QQYGSSPPWT
PLC6	IGKV4-1	IGKJ2	QSVLYSSNNKNY	WAS	QQYYSTPPYT
PLC7	IGLV1-44	IGLJ3	SSNIGSNT	SNN	AAWDDSLNGPVV
PLC8	IGLV1-51	IGLJ3	SSNIGNNY	DNN	GTWDSSLSAVV
PLC9	IGLV3-1	IGLJ3	KLGDKY	QDS	QAWDSSTVV

18 Extended Data Table 1. List of public light chains screened in this study. Light chain V-

19 genes were derived from a previously published dataset of homeostatic repertoires from three

20 donors. For each of these V-genes, its most commonly associated germline J-gene was chosen.

22

23 Extended Data Figure 3. a, IgSeq VH gene usage. b, YSD-IgSeq VL gene usage. c, Somatic

24 hypermutation as a function of gene family calculated using Geneious Biologics.

Extended Data Figure 4. Representative YSD cell sorting lineage plots. Donor repertoires 30 were cloned as Fab libraries and displayed in yeast. Yeast were labeled for expression (y-axis, 31 32 anti-FLAG-FITC) and antigen binding (x-axis, biotinylated ECD, Streptavidin-Alexa Flour 488; 33 human-Fc RBD, anti-human Alexa Fluor 488). Each library was subjected to selection in the presence of either RBD or spike ECD. Each population was subjected to sorting into up to two 34 gates at a time, such that after several rounds of selection, populations with various expression 35 and binding characteristics were enriched (see Rd 3). Combinatorial libraries consisted of 36 randomly-paired VHs and VLs cloned from donor cDNA. 37

- 40 Extended Data Figure 5. Definition of candidate VH-VL sequences from error-prone
- 41 MinION sequencing.

				MinION, 1.7-2.1kb		MinION, all			iSeq						
	MinION	MinION		RB	D	EC	CD	RB	D	EC	D	RE	BD	ECD	– – YSD antigen
	1.7-2.1kb	all	iSeq	R1 R2	R3	R1 R2	R3	R1 R2	R3	R1 R2	R3	R1 R2	R3	R1 R2 R3	– selection rou
VH CDR3	total reads	total reads	total reads	1-2 5-6	9-12	3-4 7-8	13-16	1-2 5-6	9-12	3-4 7-8	13-16	1-2 5-6	9-12	3-4 7-8 13-16	– sample
AKTSGYNLPDY	2467936	3218688	82347												
ARGTIYFDRSGYRRVDPFHI	682539	1153588	41256												E 1
ATGPAVRRGSWFDP	189383	250994	14595												
ARRQWTFDY	170557	198948	5961												F
ATGSPFDRTQNWFDP	150096	195000	9471												
ARDGGGYVSY	137057	184361	7760												
ARGVGAMQLWLRGYYFDS	101311	136418	10220												= 10 ⁻¹
TTDRTYDYVWGSYRYEDY	18251	26192	1497												Ēα
ASPEASYYYGDRGHFFPARRIDFDF	14123	19357	1356												i jdu
TTDRSYDYVWGSYRYPDY	13957	20327	1046												sar
ARIPIATHLGSDY	13507	20181	1058												- ii
ATAAAVRGRGTIDY	11135	17518	924												- 10 ⁻² 9
ARDYGRGGV	9303	12940	631												nba
AKDRAIFYLNPRYYLDY	9245	12123	881												efre
ASPTVT	8847	11590	436												ative
ARELPPGRMVVPATYWHFDL	7591	11084	928												- lei
TSPRADYGSNSVGNY	5736	7607	725												10-3
ARDGITNSGVVTHFGMDV	4214	5713	320												10
ARHMGMQLWLRAHDAFDL	908	1137433	46761												-
ARLGTGYP	655	1077	32												
ACSRARGFMFFDY	631	1850171	71835												-
AKATQLFWLGQFTRDGFDI	366	2110	128												
ARADSCNGGICYYQGMDV	215	602990	27489												<10 ⁻⁴
AREQPPGRMVVPATYWHFDL	70	8668	222												

45 Extended Data Figure 6. VH CDR3 read counts and relative abundance from the YSD-

46 **IgSeq experiment**, shown for MinION reads of 1.7 kb to 2.1 kb (left), all MinION reads (center)

47 and all iSeq reads (right). Heatmap values are CDR3 frequencies, or read counts normalized

48 within each respective sample. Length requirements improve VHVL abundance estimation by, in

49 particular, removing the inflated counts of short artifactual reads due to unbalanced PCR

50 amplification. Comparison with and without filtering shows certain CDR3 are disproportionately

51 affected. The iSeq read counts for a VH CDR3 include only reads with identical amino acid

52 CDR3 annotation. The respective MinION counts also include reads diversified through

53 sequencing error, recovered through our clustering methods. High MinION error rates create

54 enormous sequence diversity. Full-length VH diversity is bounded only by the total read count.

(center, right panels) There is strong correspondence between the unfiltered MinION and iSeq
 CDR3 frequencies. This indicates that our independent MinION read consolidation techniques

50 CDNS frequencies. This indicates that our independent withow read consolidation techniqu

57 successfully recapitulate CDR3 patterns observed from the much more accurate Illumina

58 sequencing platform.

61 Aver Horr 67,A
62 Extended Data Figure 7. Representative YSD single clone flow cytometry. The x-axis is
63 binding, and the y-axis is expression. Each of the four columns represents a single clone
64 assayed against Ecto (top row) and RBD (bottom row). Sequencing confirmed clones c and d
65 are identical. Clones were initially prioritized on expression normalized binding and lack of RBD
66 binding.

Extended Data Figure 8. Yeast surface display of a combinatorially assembled donor repertoire.

a, Representative example of YSD cell sorting showing donor 3 Fab selection with the ECD

73 antigen. The x-axis (AF-647) shows antigen binding and the y-axis (FITC) shows Fab

74 expression level. Each round was sorted using one or two gates to enrich populations with

different phenotypes. **b**, Histogram showing enrichment of binders from round one (purple) to

round 3 (light green) in the highlighted lineage. **c**, Table showing the top HCDR3s as ranked by

77 enrichment in this lineage. Relative ranking by raw readcount is also compared. The bolded

78 HCDR3 represents neutralizing mAb 7-6. **d**, Area chart showing HCDR3 enrichment throughout

selection. Each unique HCDR3 is represented as a fraction of all HCDR3s in that population.

- 80 Significant bias exists in the initial library, but by the end of the selection top variants represent 81 over 10% of the total population
- 81 over 10% of the total population.

Extended Figure 9. a-c, YSD selected VHs from donors 1-3 after three rounds of selection. d-f,
 Somatic hypermutation by gene family as calculated by Geneious Biologics.

mA	b IC50 nM	VH gene	H-CDR3	VL gene	L-CDR3	Epitope	HC source	LC source
8-3	2 0.018	IGHV1-24	ATGSPFDRTQNWFDP	IGLV2-8	SSYAGSNNLA	NTD	lgSeq	YSD
N3-	1 0.25	IGHV4-31	ARGTIYFDRSGYRRVDPFHI	IGKV1-5	QQYNSYSPWT	RBD	YSD	PLC
8-13	1 0.30	IGHV1-24	ATGSPFDRTQNWFDP	IGLV1-51	GTWDNSLSAGV	NTD	lgSeq	YSD
8-11	4 0.35	IGHV1-24	ATGPAVRRGSWFDP	IGLV1-51	GTWDSSLSGYV	NTD	lgSeq	YSD
12C	8 0.84	IGHV1-24	ATGPAVRRGSWFDP	IGLV1-51	GTWDSSLSAVV	NTD	lgSeq	PLC
A7V	3 0.95	IGHV1-24	ATGSPFDRTQNWFDP	IGLV1-51	GTWDSSLSAVV	NTD	lgSeq	YSD
7-6	0.98	IGHV1-24	ATRFAVYGDYLIDY	IGLV3-19	NSRDSSGDLVV	NTD	YSD	YSD
8-13	2 1.39	IGHV1-24	ATGSPFDRTQNWFDP	IGLV1-51	GTWDSSLSAGV	NTD	lgSeq	YSD
40	7 2.15	IGHV1-24	ATAAAVRGRGTIDY	IGLV1-44	AAWDDSLNGPVV	NTD	lgSeq	PLC
40	8 2.35	IGHV1-24	ATAAAVRGRGTIDY	IGLV1-51	GTWDSSLSAVV	NTD	lgSeq	YSD
74	8 4.24	IGHV1-24	ATGSPFDRTQNWFDP	IGLV1-51	GTWDSSLSAVV	NTD	lgSeq	PLC
8-3	6.42	IGHV3-66	ARGGVVDTYYYYGMDV	IGLV7-46	LLSQSGAWV	NTD	lgSeq	YSD
3-2	6 9.42	IGHV3-30-3	ARPYSGSYWGYFDY	IGLV1-47	AAWDDSLSGPV	S2	YSD	YSD
N3-	3 13.1	IGHV4-31	ARGTIYFDRSGYRRVDPFHI	IGKV3-11	QQRSNWPPLT	RBD	YSD	PLC
1D4	4 25.5	IGHV2-70	ARIPIATHLGSDY	IGKV3-15	QQYNNWPPWT	RBD	lgSeq	PLC
N3-	7 27.7	IGHV4-31	ARGTIYFDRSGYRRVDPFHI	IGLV1-44	AAWDDSLNGPVV	RBD	YSD	PLC
6-3/	A 32.0	IGHV4-31	ARGTIYFDRSGYRRVDPFHI	IGLV8-61	TLYMGGGLLV	RBD	YSD	YSD
8-9	6 33.5	IGHV3-30	AKAPGQWLRFHYYGMDV	IGLV1-40	NSRDINSNHVL	NTD	lgSeq	YSD
8B	5 34.8	IGHV1-2	ARELPPGRMVVPATYWHFDL	IGKV3-20	QQYGSSPPWT	RBD	lgSeq	PLC
3B	9 51.4	IGHV3-30	ARDGGGYVSY	IGLV3-1	QAWDSSTVV	NTD	lgSeq	PLC
8-13	65.1	IGHV3-30	ATGPAVRRGSWFDP	IGKV1-39	QQSYSTPRT	NTD	lgSeq	YSD
4A	5 65.7	IGHV3-30-3	AKASQLFWLGQFTRDGFDI	IGKV3-20	QQYGSSPPWT	RBD	lgSeq	PLC
6-3	B 81.5	IGHV4-31	ARGTIYFDRSGYRRVDPFHI	IGLV1-40	QSYDGSLNDDVI	RBD	YSD	YSD
B3.	1 124	IGHV3-30	ARARGGSYYYGMDV	IGKV1-5	QQYNSYSPWT	S2	YSD	PLC
8-4	2 124	IGHV3-30	ARDYGRGGV	IGKV1-39	QQSYSTRPLT	NTD	lgSeq	YSD
1D	1 173	IGHV2-70	ARIPIATHLGSDY	IGKV1-5	QQYNSYSPWT	RBD	lgSeq	PLC
1D	9 183	IGHV2-70	ARIPIATHLGSDY	IGLV3-1	QAWDSSTVV	RBD	lgSeq	PLC
N6-	2 222	IGHV3-30-3	ARPYSGSYWGYFDY	IGKV2-28	MQALQTPPYT	S2	YSD	PLC
P4D	3 242	IGHV3-30	AKAPGQWLRFHYYGMDV	IGLV1-40	QSYGNNQGV	S2	YSD	YSD
P4A	3 272	IGHV3-30	ARDDIGRVGSGWYCPLY	IGKV1-39	QQSYSTPLS	S2	YSD	YSD
8-1	9 >300	IGHV4-31	ARGTIYFDRSGYRRVDPFHI	IGKV1-39	QQSYSTRPLT	RBD	YSD	YSD
3-1	8 >300	IGHV3-30	AKQAGAYCSGGSCYSSSEADY	IGLV1-40	QSYGNNQGV	RBD	YSD	YSD
P3B	>300	IGHV3-30-3	ARPYSGSYWGYFDY	IGLV3-1	QAWDSSTF	52	YSD	YSD
6-3	>300	IGHV4-31		IGLV3-1		RBD	TSD In Sea	TSD
4A	>300	IGHV3-30-3	ANASQLEWLGQETRDGEDI	IGLV1-44	AAWDDSLNGPVV	RBD	igSeq	PLC
103	>300	IGHV2-70	ARIPIATHLGSDY	IGKV3-20	QQTGSSPPWT	RBD	igseq	PLC
P3C	>300	IGHV3-23	APGRSLY	IGLV1-40	QSYDSGLSGSI	S2	YSD	YSD

88 Extended Data Table 2. Summary of neutralizing antibodies

93 Extended Data Figure 10. Cryo-EM data processing workflow for A7V3 bound SARS-CoV-2

S.

96 Extended Data Figure 11. Cryo-EM data processing workflow for N3-1 bound SARS-CoV-2
 97 S.

Extended Data Figure 12. Avidity of mAb N3-1 likely achieved by a single IgG binding to a trimeric spike. a, Representative 2D class averages of IgG N3-1 complexed with SARS-CoV-2 S by negative stain electron microscopy (nsEM). Although the density of Fc is not well-resolved, two clear densities of Fabs are clearly visible per trimeric spike. b, A schematic model generated by Gaussian-smoothened cryoEM map of N3-1 bound to SARS-CoV-2 S. The Fab density is highlighted in brick red, and the spike is shown in light blue. The unobserved Fc is shown as orange ovals.

109

110 Extended Data Figure 13. mAb N3-1 exhibits cross-reactivity and avidity to CoV spikes

a-c, Binding of Fab N3-1 to SARS-CoV-2 S WuHan-Hu-1 [a], its variants B.1.1.7 [b] and B.1.351

112 **[c]** were assessed by surface plasmon resonance (SPR) using an NTA sensor chip. **d**, Binding

of IgG N3-1 to SARS-CoV-1 S was also assessed by SPR. Binding data are shown as black

lines. For **[a-c]**, the best fit to a heterogeneous binding model is shown as red lines. For **[d]**, the

best fit was achieved using a 1:1 binding model and shown as red lines.

118 Extended Figure 14. Cryo-EM data validation.

119 a-b, FSC curves (top) and the viewing direction distribution plots (bottom) for global reconstruction of A7V3 bound to SARS-CoV-2 S [a] and focused reconstruction of A7V3 bound to S-NTD [b]. c, 120 121 cryo-EM density map of A7V3 bound to SARS-CoV-2 S (left) and S-NTD (right), respectively. The 122 local resolution is depicted by a spectrum of rainbow color as a scale bar. **d-e**, FSC curves (top) 123 and the viewing direction distribution plots (bottom) for global reconstruction of N3-1 bound to SARS-CoV-2 S [d] and focused reconstruction of N3-1 bound to S-RBDs [e]. f, cryo-EM density 124 map of N3-1 bound to SARS-CoV-2 S (left) and S-RBDs (right), respectively. The local resolution 125 126 is depicted by a spectrum of rainbow color as a scale bar.

128 Extended Data Table 3. N3-1 CryoEM Statistics

EM data collection							
Microscope		FEI Titan Krios					
Voltage (kV)	300						
Detector	Gatan K3						
Magnification (nominal)	22500						
Pixel size (Å/pix)		1.1					
Flux (e:/pix/sec)	8						
Frames per exposure		80					
Exposure (e ⁻ /Å ²)		80					
Defocus range (µm)		1.0-2.5					
Micrographs collected		3203					
Sample	S	ARS-CoV-2 S + N3-1 Fab					
3D reconstruction statistics							
	Overall	RBDs-N3-1 subcomplex					
Particles	269,553	269,553					
Symmetry	C1	C1					
Map sharpening B-factor	-123.6	-106.8					
Unmasked resolution at 0.143 FSC (Å)	3.90	4.50					
Masked resolution at 0.143 FSC (Å)	2.78 3.16						
Model refinement and validation statistics							
Composition							
Amino acids		579					
RMSD bonds (Å)		0.003					
RMSD angles (°)		0.59					
Average B-factors							
Amino acids		102.3					
Ramachandran							
Favored (%)		95.8					
Allowed (%)		4.2					
Outliers (%)		0					
Rotamer outliers (%)		0					
Clash score		4.0					
C-beta outliers (%)		0					
CaBLAM outliers (%)		1.6					
CC (mask)		0.83					
MolProbity score		1.48					
EMRinger score		4.95					

132 Extended Data Table 4. A7V3 CryoEM Statistics

133

131

EM data collection FEI Titan Krios Microscope Voltage (kV) 300 Gatan K3 Detector Magnification (nominal) 22500 Pixel size (Å/pix) 1.1 Flux (e/pix/sec) 8 Frames per exposure 80 Exposure (e:/Å2) 80 Defocus range (µm) 1.0-2.5 Micrographs collected 3636 Sample SARS-CoV-2 S + A7V3 Fab 3D reconstruction statistics Overall NTD-A7V3 subcomplex Particles 715,398 216,070 Symmetry C1 C1 -151.7 -94.1 Map sharpening B-factor Unmasked resolution at 0.143 FSC (Å) 4.00 8.70 Masked resolution at 0.143 FSC (Å) 2.99 3.36 Model refinement and validation statistics Composition

Amino acids	452
RMSD bonds (Å)	0.003
RMSD angles (°)	0.62
Average B-factors	
Amino acids	111.1
Ramachandran	
Favored (%)	94.0
Allowed (%)	6.0
Outliers (%)	0
Rotamer outliers (%)	0
Clash score	4.7
C-beta outliers (%)	0
CaBLAM outliers (%)	3.1
CC (mask)	0.76
MolProbity score	1.64
EMRinger score	3.38

138 Extended Data Table 5. Houston spike variant ELISAs

	ACE2		CR3022		N	3-1	A7V3		
Variant	EC50 nM	R squared							
S-2P	8.5	0.99	3.6	0.99	0.8	0.96	1.8	0.97	
S-2P D614G	7.4	0.95	3.9	0.98	1.4	0.99	4.1	0.98	
HexaPro	8.9	0.95	7.3	0.97	1.6	0.99	8.7	0.99	
HexaPro D614G	4.9	0.99	5.9	0.98	1.6	0.99	3.1	0.97	
F338L	4.5	0.97	15.9	0.99	1.5	0.93	2.5	0.98	
A352S	4.4	0.99	4.3	0.97	1.6	0.98	3.7	0.98	
T385I	4.8	0.97	5.2	0.96	1.0	0.99	1.6	0.98	
A419V	5.4	0.99	3.9	0.96	2.1	0.95	1.9	0.96	
V445F	4.2	0.95	5.4	0.98	0.9	0.99	3.1	0.99	
G446V	4.0	0.96	3.3	0.99	2.0	0.97	3.1	0.99	
F456L	3.8	0.99	3.9	0.98	1.5	0.98	3.9	0.98	
E484Q	4.0	0.96	3.9	0.98	2.1	0.99	2.6	0.98	
A520S	3.8	0.96	2.4	0.98	1.3	0.99	4.5	0.97	
K528R	5.4	0.99	3.6	0.98	1.0	0.96	5.7	0.97	
S373P	3.8	0.95	93.1	0.97	3.7	0.99	1.7	0.98	
R408T	8.2	0.96	10.1	0.99	1.5	0.99	10.4	0.94	

RBD mutations

143

144 Extended Figure 15. N3-1 binding to Regeneron escape mutants and S477N, as measured

145 **using the mammalian surface display assay.** HEK293T cells transiently expressing full length

spike protein were stained with anti-spike antibodies and analyzed by flow cytometry. The

147 median fluorescence intensity of the stained cells was normalized to the HexaPro-D614G spike.

148 Spike variants with single RBD mutations shown to reduce REGN10987 and/or REGN10933

binding were tested with N3-1. The SARS-CoV2 RBD subunit and SARS-CoV-2 spike with a

150 deleted RBD (Δ RBD) were included as controls.